你好,欢迎来到中华试剂网 购试剂 买耗材! [请登录][注册有惊喜]

货号快速下单 | 签到送积分   | 会员中心 | 客服热线:400-021-2765

源叶SCI文献引用资讯(一)

2024/8/15 13:16:14  作者:源叶生物


 

产品货号 产品名称 CAS 规格
S30020 乙二胺四乙酸 60-00-4 AR,99.5%

摘要:Mitochondrial homeostasis is of great importance for cartilage integrity and associated with the progression of osteoarthritis (OA); however, the underlying mechanisms are unknown. This study aims to investigate the role of mitochondrial deacetylation reaction and investigate the mechanistic relationship OA development. Silent mating type information regulation 2 homolog 3 (SIRT3) expression has a negative correlation with the severity of OA in both human arthritic cartilage and mice inflammatory chondrocytes. Global SIRT3 deletion accelerates pathological phenotype in post-traumatic OA mice, as evidenced by cartilage extracellular matrix collapse, osteophyte formation, and synovial macrophage M1 polarization. Mechanistically, SIRT3 prevents OA progression by targeting and deacetylating cytochrome c oxidase subunit 4 isoform 2 (COX4I2) to maintain mitochondrial homeostasis at the post-translational level. The activation of SIRT3 by honokiol restores cartilage metabolic equilibrium and protects mice from the development of post-traumatic OA. Collectively, the loss of mitochondrial SIRT3 is essential for the development of OA, whereas SIRT3-mediated proteins deacetylation of COX4I2 rescues OA-impaired mitochondrial respiratory chain functions to improve the OA phenotype. Herein, the induction of SIRT3 provides a novel therapeutic candidate for OA treatment.

 
产品货号 产品名称 CAS 规格
S63718 5(6)-羧基四甲基罗丹明琥珀酰亚胺酯 246256-50-8 ≥95%

 

摘要:Dose verification in radiotherapy is crucial to ensure a safe and efficient outcome of medical treatments. To overcome routine radiation dose detection challenges, a composite hydrogel sensor comprised of fluorescent poly(N-isopropylacrylamide)-based nanogels and clay nanoparticles is reported. The sensing methodology is primarily based on the transition of hydroxyphenyl fluorescein to fluorescence in the presence of OH radicals due to the radiolysis of water molecules under ionizing radiation, whereas the fluorescence intensity of 5(6)-carboxytetramethylrhodamine is stable upon radiation. Harnessing the ratiometric fluorescent strategy, in vitro point- and topographical-dose profiles under X-ray and electron beam irradiation and the in-vivo determination of γ-ray dose are determined without any waiting time after irradiation. The determined dose is comparable to the results of Monto Carlo simulations and clinical treatment planning systems (TPS). Also, the sensing capability of the developed sensor is well maintained, regardless of the types of radiation, dose rate, radiation energy, testing temperature, and storing period. Hence, our sensors show the translational potential for dose verification in radiotherapy.

文献链接:https://www.sciencedirect.com/science/article/pii/S1385894723002784

产品货号 产品名称 CAS 规格
B20702  酪醇 501-94-0 HPLC≥98%
B32348 色醇 526-55-6 HPLC≥99%
B21705 棕榈酸 57-10-3 GC≥99%
B20335 对香豆酸 501-98-4 HPLC≥98%

 

摘要:Metabolic engineering has been widely used for production of natural medicinal molecules. However, engineering high-yield platforms is hindered in large part by limited knowledge of complex regulatory machinery of metabolic network. N6-Methyladenosine (m6A) modification of RNA plays critical roles in regulation of gene expression. Herein, we identify 1470 putatively m6A peaks within 1151 genes from the haploid Saccharomyces cerevisiae strain. Among them, the transcript levels of 94 genes falling into the pathways which are frequently optimized for chemical production, are remarkably altered upon overexpression of IME4 (the yeast m6A methyltransferase). In particular, IME4 overexpression elevates the mRNA levels of the methylated genes in the glycolysis, acetyl-CoA synthesis and shikimate/aromatic amino acid synthesis modules. Furthermore, ACS1 and ADH2, two key genes responsible for acetyl-CoA synthesis, are induced by IME4 overexpression in a transcription factor-mediated manner. Finally, we show IME4 overexpression can significantly increase the titers of isoprenoids and aromatic compounds. Manipulation of m6A therefore adds a new layer of metabolic regulatory machinery and may be broadly used in bioproduction of various medicinal molecules of terpenoid and phenol classes.

文献链接:https://www.sciencedirect.com/science/article/pii/S2211383523000023

上一篇:源叶SCI文献引用资讯(二) 
下一篇:源叶SCI文献引用资讯